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ABSTRACT

Mesenchymal stem cells (MSCs) are increasingly being used in tissue engineering and cell-based
therapies in all fields ranging from orthopedic to cardiovascular medicine. Despite years of
research and numerous clinical trials, MSC therapies are still very much in development and
not considered mainstream treatments. The majority of approaches rely on an in vitro cell
expansion phase in monolayer to produce large cell numbers prior to implantation. It is clear
from the literature that this in vitro expansion phase causes dramatic changes in MSC pheno-
type which has very significant implications for the development of effective therapies. Previous
reviews have sought to better characterize these cells in their native and in vitro environments,
described known stem cell interactions within the bone marrow, and discussed the use of inno-
vative culture systems aiming to model the bone marrow stem cell niche. The purpose of this
review is to provide an update on our knowledge of MSCs in their native environment, focusing
on bone marrow-derived MSCs. We provide a detailed description of the differences between
naive cells and those that have been cultured in vitro and examine the effect of isolation and
culture parameters on these phenotypic changes. We explore the concept of “one step” MSC
therapy and discuss the potential cellular and clinical benefits. Finally, we describe recent work
attempting to model the MSC bone marrow niche, with focus on both basic research and
clinical applications and consider the challenges associated with these new generation culture
systems. STEM CELLS 2014;32:1713–1723

INTRODUCTION

The discovery of plastic adherent, colony-
forming cell populations derived from bone
marrow, which were later shown to demon-
strate trilineage differentiation potential, initi-
ated the field of mesenchymal stem cell (MSC)
research [1, 2]. In the context of cell therapy,
MSCs offer several advantages over other can-
didate cell types such as embryonic or induced
pluripotent stem cells, in that they are more
readily available, can be used autologously, do
not require extensive in vitro manipulation,
and are generally associated with a lower risk
of tumorigenicity. Previous reviews on MSCs
have highlighted how microenvironmental
changes are able to influence cellular pheno-
type [3–5], described known stem cell interac-
tions in the bone marrow milieu [6–8], and
explored the immunomodulatory properties of
these cells from a clinical perspective [9].
Here, we bring together current knowledge of
MSCs in their bone marrow niche environment
and describe the dynamic nature of their phe-

notype in vitro. We compare the use of mono-
nuclear cells (MNCs) versus MSCs in preclinical
in vivo studies and in the clinic. Lastly, we dis-
cuss the need and potential translational bene-
fits associated with the development of novel
bone marrow niche culture systems.

MSC NICHES IN BONE MARROW

MSCs are thought to occupy anatomically dis-
tinct locations within the marrow; endosteal,
stromal, and perivascular, with perivascular
niches in both endosteal and stromal locations
[4, 6, 10]. The phenotypical similarities of MSCs
within their respective niches are currently
unknown. Moreover, it is not apparent whether
these discrete MSC populations are isolated
and essentially self-replenishing, whether they
are able to migrate from one niche to another
in response to physiological cues or whether
they exhibit functional differences. MSCs share
their niche environments with many other cell
types including osteoblasts and hematopoietic
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stem cells (HSCs). These three cell types demonstrate crosstalk
and appear to reciprocally regulate cell behavior and lineage
commitment (Fig. 1).

Endosteal niche MSCs line the bone surface where they
are physically associated with both osteoblasts and HSCs [6,
11]. Here, they provide a source of osteoprogenitors, and are
also believed to contribute indirectly to osteogenesis by the
secretion of growth factors and cytokines [12]. Osteoblasts
secrete a plethora of hematopoietic growth factors including
granulocyte colony-stimulating factor and hepatocyte growth
factor [13, 14], angiopoietin [15], thrombopoietin [16, 17], Il-
6, CXCL12 (also known as stromal-derived factor 1 [SDF-1]),
and stem cell factor [11]. Under the control of parathyroid
hormone/parathyroid related peptide, Notch signaling
between osteoblasts and HSCs functions to expand the HSC
pool while maintaining a primitive population of stem cells
[11]. In turn, HSCs are capable of inducing the osteogenic dif-
ferentiation of MSCs, which appears to be dependent upon
BMP2 and BMP6 signaling [18]. Additional studies implicating
monocytes [19], and specific osteoblast and mesenchymal
progenitor subsets on HSC maintenance [20], highlight the
complexity of cellular interactions in the bone marrow.

The vascular niche hypothesis for MSCs arose from in
vitro observations demonstrating phenotypic similarity
between pericytes and MSCs [21, 22]. This was later con-
firmed by the in vivo localization of a population of self-
renewing, multipotent progenitor cells at perivascular sites in
bone marrow and other tissues [23, 24]. CD1461 osteoproge-
nitors, termed adventitial reticular cells, were identified in the
endothelium of marrow sinusoids and following ectopic trans-
plantation into mice, were shown to induce the formation of
bone and an associated hematopoietic marrow component
[23]. A breakthrough study by M�endez-Ferrer in 2010
revealed that perivascular MSCs play a critical role in main-
taining a quiescent HSC pool in bone marrow [6]. Nestin1

MSCs were found to colocalize with HSC at perivascular loca-
tions in the endosteum and stroma, express HSC maintenance
genes, including CXCL12, and were associated with sympa-
thetic nerve fibers which have previously been shown to reg-
ulate HSC trafficking into the bloodstream [25–27]. Depletion
of Nestin1 MSCs reduced both the number of endogenous
HSCs and their homing ability following transplantation, to
the marrow in a lethally irradiated mouse model [6]. The
importance of the CXCL12-CXCR4 signaling pathway with

Figure 1. Schematic representation of the endosteal, stromal and perivascular mesenchymal stem cell niches in bone marrow. Within
the endosteal niche, and under the control of parathyroid hormone/parathyroid related peptide (PTH/PTHrP), osteoblasts maintain hem-
atopoetic stem cell renewal through Notch signaling and by the release of growth factors GCSF, HGF, IL-6, SCF, SDF-1, Ang1, and Thrm1.
Hematopoietic cells stimulate the differentiation of mesenchymal progenitors into osteoblasts by BMP2 and BMP6 signaling. CXCL12-
CXCR4 and Notch signaling between mesenchymal and hematopoietic stem cells maintains a quiescent hematopoietic pool in the peri-
vascular niche. Interactions between mesenchymal and hematopoietic stem cells specifically at the stromal niche are less defined.
Abbreviations: Ang1, angiopoietin-1; GCSF, granulocyte colony-stimulating factor; HGF, hepatocyte growth factor; IL-6, interleukin 6; SCF,
stem cell factor; SDF-1, stromal cell-derived factor-1; Thrm1, thrombospondin-1.
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regard to HSC mobilization has been known for over a decade
[28]. CXCL12 was first discovered to be expressed by osteo-
blasts and endothelial cells [29], and later by stromal cells lin-
ing the endosteal surface and surrounding stromal sinusoids,
termed CXCL12-abundant reticular cells (CAR cells) [30]. CAR
and Nestin1 MSCs occupy similar locations and produce
CXCL12, but whether these cells denote equivalent MSC pop-
ulations or whether Nestin1 MSCs represent a more naive
stem cell population is still unclear. A recent multiple knock-
out mouse study whereby CXCL12 expression was selectively
deleted from (a) endothelial cells and mature osteoblasts, (b)
osteoprogenitors and CAR cells, or (c) all mesodermal-derived
cells revealed niche cell specific functions of this signaling
pathway on HSC maintenance [31]. Results of this study sug-
gest that osteoprogenitors and/or CAR cells serve to maintain
the HSC pool and support B-lymphoid progenitor survival.
CXCL12 knockout from mesodermal-derived cells (including
MSCs) resulted in increased HSC cycling, indicating a role for
maintaining HSC quiescence. In addition to the CXCL12-CXCR4
axis, Notch signaling has also shown to play a fundamental
role in the ex vivo expansion and maintenance of HSCs by
CD1461 Nestin1 MSCs [32].

PERICYTES AND MSCS

Functioning to maintain vessel maturation and stability, peri-
cytes are typically identified by the cell surface marker expres-
sion of NG2 [33], platelet-derived growth factor (PDGF)
receptor-beta [34], and CD146 [35]. In vitro cultured pericytes
exhibit a marker profile and multipotent differentiation poten-
tial similar to that of MSCs, making discrimination between
the two cell types difficult [21, 22, 24]. It has been proposed
that pericytes represent the primitive ancestor cell of MSCs in
vivo [24]. Two alternative hypotheses exist, that pericytes are
simply MSCs in a perivascular locale or that they represent a
distinct MSC subset population. A study comparing both pri-
mary and commercially available pericytes to heterogeneous
MSC populations in endothelial coculture angiogenesis assays
has indicated functional differences between these two cell
types in vitro [36]. CD1461 MSC maintained endothelial
tube-like formation on MatrigelTM and supported endothelial
spouting, whereas CD1462 MSC did not. Interestingly, initially
CD1462 MSC acquired CD146 expression following culture,
making them distinguishable from pericytes only on the basis
of angiogenic function. This work provides evidence that peri-
cytes represent a distinct cell population in their own right.
However, in the absence of comprehensive cell lineage tracing
studies, whether pericytes indeed represent the common
ancestral cell of all or discrete MSC subpopulations has yet to
be determined. What is clear is that bone marrow contains a
heterogeneous population of multipotent stromal stem cells.
Attempts to define and discriminate between these cells have
resulted in an ever growing repertoire of nomenclature;
MSCs, mesenchymal progenitor cells, adventitial reticular cells,
CAR cells, and pericytes, leading to a certain degree of ambi-
guity and confusion within the field. Are these cell popula-
tions distinct or are they simply the same cell in a different
location that has adopted a phenotype in response to a
change in microenvironment? A greater understanding of the
developmental origin and differentiation pathways of MSCs, in

vivo behavior, and the development of robust cellular identifi-
cation methods may allow us to better understand the biol-
ogy of these heterogeneous cell populations and fully
appreciate their clinical relevance.

ISOLATION OF MNCS AND MSCS

In the absence of standardized isolation and culture expansion
protocols for MSCs, the way in which these cells are cultured
in vitro varies considerably between research groups. MSC
isolation procedures typically use density centrifugation (with
FicollTM, LymphoprepTM, or PercollTM density mediums) to
separate the MNC fraction from the other marrow constitu-
ents (i.e., red blood cells, plasma, and lipids). This MNC frac-
tion contains an enriched population of T cells, B cells,
monocytes, HSCs, endothelial progenitor cells, and MSCs. Fol-
lowing plating onto tissue culture flasks, MSCs, which repre-
sent the adherent cell population, form colonies. It is
generally assumed that MSCs adhere within a few days after
initial seeding and that the cell culture is rid of contaminating,
non-adherent hematopoietic cells following serial media
changes.

There is concern that the use of different MNC isolation
protocols between laboratories may result in phenotypic dif-
ferences of both MNCs and MSCs that could subsequently
affect functional outcome following their use in cell-based
therapies. Differences in how marrow aspirates are extracted
and processed, choice of density medium, wash and centrifu-
gation steps, duration of cell attachment, and media/serum
type may each play a role. This has been demonstrated by
discrepancies in clinical outcome between two similar,
randomized, placebo-based controlled trials investigating MNC
therapy for the prevention of cardiac failure postmyocardial
infarction. The REPAIR-AMI trial [37] reported improved left
ventricular ejection fraction following MNC therapy versus
placebo, compared to the ASTAMI trial which showed no
improvement versus placebo [38]. A comprehensive study by
Seeger et al. [39] demonstrated that the combined differences
in MNC isolation protocols between these trials likely
accounted for the disparity in clinical outcome. The trials used
different density media, centrifugation speeds, wash steps,
and storage conditions. Seeger et al. [39] found that the pro-
tocol used in the REPAIR-AMI trial resulted in improved MNC
yield, CFU (colony-forming unit) efficiency, chemotactic
response of MNC-derived MSC to SDF-1, and outcome of vas-
cular repair in a mouse model of hind limb ischemia, which
was concomitant with the reported improvement in clinical
outcome. Despite this, another comparative study reported
improved MNC yield, yet no significant difference in CFU-
efficiency when comparing protocols used in the REPAIR-AMI
versus ASTAMI trials [40]. Furthermore, other factors such as
the proportion of apoptotic cells [41] and degree of red blood
cell contamination [42] have been linked with the clinical effi-
cacy of MNCs.

The density centrifugation process itself reduces the total
yield of MNCs from bone marrow [40, 43, 44]. Interestingly,
plating whole bone marrow directly has been reported not
only to increase CFU-efficiency but also result in a population
of MSC demonstrating longer telemore length versus isolation
protocols using either FicollTM or PercollTM [43]. This suggests
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that a proportion of more naive MSCs may be lost as a result
of density centrifugation. This has led others to use magnetic
bead separation techniques which deplete the polymorphonu-
clear cell population on the basis of granularity or expression
of CD15. MNC recovery from both rat and human bone marrow
was reported to be highest after magnetic-activated cell sorting
separation, followed by PercollTM and then FicollTM density
centrifugation (25.665.8%, 51.562.3% and 72.366.7% cell
recovery, respectively) [44]. Conversely, other studies directly
comparing the effects of FicollTM to LymphoprepTM [40] or Per-
collTM [43] showed no significant difference in MNC yield.

Importantly, there is an increasing body of evidence to
suggest that an MSC population is present in the initial, non-
adherent MNC fraction [45–48]. This initially nonadherent
MSC population is capable of forming CFU upon serial plating
[48]. Importantly, the survival and subsequent expansion of
these cells were shown to be critically dependent upon FGF2
signaling. These MSCs demonstrated greater proliferation and
trilineage differentiation potential in vitro and improved
osteogenesis in vivo compared to traditionally isolated cells.
Together, these studies suggest the existence of heterogene-
ous MSC populations in the MNC fraction, and that those in
the initially nonadherent fraction may represent a more naive
stem cell population. Because of the apparent selection of an
MSC population from the original marrow aspirate, we would
propose that the term monolayer selection is adopted when
discussing the isolation and culture of MSC using the above
described techniques.

EXPANSION OF MSCS IN MONOLAYER

At p0, morphologically distinct MSC populations are present;
small, spindle-shaped, proliferative cells, and larger, flattened
cells which replicate at a comparably slower rate [49, 50]. Cell
populations tend to become more homogenous in terms of
appearance with subsequent in vitro expansion. It is widely
acknowledged that, following extended in vitro culture, MSCs
undergo replicative senescence [49–51]. The onset of growth
arrest is subject to significant donor variation, and as a result
reports range between 10 and 38 population doublings [49–
52]. Many groups describe MSC growth kinetics in terms of
passage number rather than population doublings which
makes data interpretation and comparison between studies
difficult. Although some groups have attempted to correlate
donor age to proliferation rate [52, 53], donor age alone is
not a reliable predictor of senescence. Rather, differences in
growth rate are likely attributed to sampling variation during
aspiration and the number of highly proliferative cells that are
originally isolated [54]. Such sampling variation has been
observed between MSC cultures acquired from two separate
aspirates taken from the same donor [55]. Growth arrest of
MSCs is associated with telomere shortening [52, 56]; how-
ever, epigenetic modifications such as DNA methylation may
also play a role [55, 57]. Comprehensive profiling studies
reveal that changes in gene expression occur immediately
after isolation and are continuously acquired during culture
[58]. Specifically, genes associated with the cell cycle, DNA
replication, and repair become downregulated in senescent
cultures [58]. After prolonged in vitro culture, MSCs appear to
lose multipotency and display a propensity toward osteogenic

differentiation [51, 56, 58]. Osteogenic lineage commitment
appears to coincide with a reduction in proliferation and gene
expression changes [56, 58]. Other studies report donor-
dependant differential gene expression of integrins [59],
extracellular matrix molecules, growth factors, and cytokines,
including CXCL12 [60] throughout culture.

Seeding Density

Typical MSC seeding densities range between 2,000 and
5,000/cm2; however, there is evidence to suggest that lower
seeding densities enhance proliferation, which is thought to
be attributed to a reduction in contact inhibition [59, 61–63].
Importantly, lowering seeding density does not appear to
affect CD (cluster of differentiation) marker profile or in vivo
osteogenic capability [61] or trilineage differentiation in vitro
[63]. Similar improvement in proliferation was demonstrated
following low density culture of MSCs supplemented with pla-
telet lysate (PL) under GMP (good manufacturing practice)-
compliant conditions without affecting CD marker profile or
multipotency [59]. These findings have important translational
implications for the optimization of large-scale clinical-grade
cell expansion of MSCs for cell-based therapies.

Media Supplementation

MSCs are most commonly expanded in a basal media such as
Dulbecco’s modified Eagle’s medium (DMEM)/DMEM F-12 or
alpha-MEM with 10% fetal bovine serum (FBS). Widespread
batch-batch variability in FBS constitutes the need for serum
testing in order to provide optimal growth conditions. Many
laboratories avoid the practice of serum-testing using com-
mercially available MSC-qualified serum, at considerable cost.
Alternatively, MSCs may be cultured using autologous serum
(AS), PL, platelet-rich plasma (PrP), or under serum-free condi-
tions using growth factor supplementation (for a detailed
review see Tonti et al. [64]). MSCs expanded in FBS are
reportedly less proliferative and subject to extensive gene
expression changes compared to MSC expanded in AS [65].
FBS-supplemented MSCs upregulated expression of genes
associated with cell-cycle inhibition and trilineage differentia-
tion, whereas the transcriptome of MSC cultured with AS was
comparably stable, suggesting AS may maintain MSCs in a
more primitive state [65]. To our knowledge, there is one
study in the literature directly comparing FBS to MSC-
qualified serum upon primary human MSCs which reported
no difference in growth rate, cell-surface marker expression,
or adipogenic/osteogenic differentiation [66]. Notably, in the
aforementioned study, MSCs were isolated from cancellous
bone chips and additionally supplemented with epidermal
growth factor, basic fibroblast growth factor, PDGF-BB, and
dexamethasone.

Compared to FBS, PrP appears to improve the MSC prolif-
eration rate [67–69]; however, the associated increase in
expression of runx2, sox9, and aggrecan suggests that it may
encourage early lineage commitment [68]. Moreover, PrP sup-
plementation reduces both SDF-1 levels and the migratory
effects of MSC secretome on HSCs [69]. When compared with
either FBS or AS, PL has been reported to improve the prolif-
eration rate without significantly affecting CD marker profile
or in vitro differentiation potential [70–73]. The stimulatory
effects of PL on MSC proliferation have been attributed to
the presence of heat-denaturable factors, but comparable
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growth rates using growth factor cocktails under serum/PL-
free conditions have not yet been achieved [73]. Notably, PL
supplementation is also associated with changes in MSC gene
expression [71] and secretome profile [72]. Interestingly, both
proliferation rate and osteogenic differentiation appear to be
enhanced by PL from younger (<35 years) versus older (>45
years) donors; however, this was not attributed to individual
or combinatorial levels of growth factors; PDGF-AB, TGF-b1,
FGF, IGF-1, or hormones; estradiol, parathormone, leptin or
1,25 vitamin D3 [74]. Tarte et al. [75] reported superior MSC
growth with a combination of FBS and FGF2 compared to PL
using commercially available MSC lines. FGF2 is a potent mito-
gen of MSCs, reported to maintain multipotency [48] and
enhance chondrogenic differentiation in vitro [76–78]. Expan-
sion of MSCs with FGF2 supplementation has been shown to
reduce CD146 expression in both primary cells [79] and com-
mercially available cell lines [80], although the resulting phe-
notypic significance of this remains unclear. For most
applications, the use of FGF2 in routine MSC culture appears
justified; however, in the absence of standardization, concen-
trations ranging between 0 and 10 ng/ml are reported, mak-
ing comparisons between research studies difficult.

It is evident that the monolayer expansion phase of MSCs
results in loss of multipotency, the ability to self-renew, and
promotes a tendency toward osteogenesis. Thus, monolayer
expanded cells are not truly representative of naive MSCs in
the bone marrow which should be borne in mind for both basic
research and possible ensuing clinical translation. Culture media
type and the use of supplements clearly affect MSC genotype
and phenotype and should be considered when selecting opti-
mal culture conditions for clinical scale-up. Whether differences
between in vitro culture protocols and subsequent modification
of cellular phenotype are likely to affect functional outcomes
following the in vivo transplantation of MSCs still remains
unclear and warrants further investigation.

CELL SURFACE MARKER EXPRESSION

In the absence of a universal, MSC-specific marker, MSCs are
currently identified by a repertoire of proteins expressed on
the cell surface. CD markers such as CD73 [2, 81] and CD105
[2, 82] were established as positive MSC markers over a dec-
ade ago. Proposed by the International Society for Cellular
Therapy in 2006, a recommended panel of positive and nega-
tive cell surface markers is now commonly used to character-
ize MSCs [83]. In line with their report, MSCs are defined as
being >95% positive for: CD105, CD73, and CD90 and >95%
negative for CD45, CD34, CD14 or CD11b, CD79alpha or
CD19, and HLA-DR. There are also a number of other positive
cell surface markers that are expressed by MSCs: CD44 [2],
CD166 [84, 85], Stro-1 [86], CD106 [2, 87], and CD146 [85,
87]. However, the function and significance of these markers
in both a biological and therapeutic context are poorly under-
stood. Moreover, reports of identical CD marker profiles
between donor matched MSC and fibroblasts following mono-
layer expansion bring their specificity into question [88].

It is becoming increasingly apparent that cell surface
marker expression profiles of in vitro expanded MSCs differ
compared to both freshly isolated cells and those residing in
their bone marrow niche environment. Table 1 provides a

summary of such changes in marker expression, with an
emphasis on primary human bone marrow-derived MSCs.
Whereas CD73 and CD105 appear to be constitutively
expressed regardless of environment [60, 85], the expression
of CD44, CD271, CD146, and CD106 appears to change as a
result of in vitro culture [59, 60, 85, 89]. Using a combination
of multicolor flow cytometry analysis and CFU assays, an
enriched population of MSCs has recently been identified in
the CD442 subset of freshly isolated bone marrow MNCs
from both mice and humans [60]. The authors demonstrated
that CD44 expression was acquired early on in the in vitro
expansion phase (both human and mouse). Additionally, DNA
microarray revealed CD73 and CD146 were upregulated while
CD271 and VCAM were downregulated following monolayer
culture [60]. The observed upregulation of CD146 expression
is in accordance with Blocki et al. [36] who demonstrated
that initially CD1462 MSC populations acquired expression of
this putative pericyte marker during in vitro expansion [36].
Conversely, a reduction in CD106 and CD146 following mono-
layer culture has also been reported [89]. Discrepancies
between such studies may be due to a combination of differ-
ent culture conditions, donor variation, and differences in
methodology such as antibody clone, immunostaining proto-
col, and gating/analysis of flow cytometry data. A recent
immunohistochemical study has revealed different MSC
marker expression profiles by distinct MSC niche populations
in bone marrow [10]. Coexpression of neural ganglioside GD2
by endosteal and perivascular CD731 MSC confirmed previ-
ous work implicating this neural protein as a novel MSC
marker [90]. Interestingly, stromal cells identified at endosteal
or stromal niches but not from perivascular locations
expressed Oct4, Nanog, and SSEA-4, suggesting endosteal and
stromal niche MSCs may represent a more primitive stem-cell
population. Whether alterations to cell surface marker expres-
sion are indicative of phenotypic changes such as loss of mul-
tipotency has yet to be determined. A better understanding
of putative MSC markers and their functions may allow us to
use CD marker expression profiles as a predictive tool for cel-
lular behavior both in vitro and in the clinic.

MNCS VERSUS IN VITRO EXPANDED MSCS

Culture expanded MSCs have been used clinically for the
treatment of various conditions including bone [92–94] and
cartilage defects [95–97], acute myocardial infarction [98–100],
and spinal cord injury [101–103]; however, complete, perma-
nent functional recovery has yet to be demonstrated. The pro-
nounced phenotypic changes associated with monolayer
expanded MSCs have turned attention toward using unpro-
cessed bone marrow or freshly isolated MNCs (Fig. 2). This
approach has been supported by the development of bone
marrow concentrating devices that can be used in the operat-
ing room [104]. On a cellular level, this may preserve MSC
multipotency, their ability to self-renew, and homing capacity.
This may not only strengthen therapeutic potency but also
avoid treatment delay and extensive costs associated with the
in vitro expansion phase. Currently recognized as an advanced
therapy medicinal product by the European Medicines Agency,
and as a human cell, tissue, and cellular and tissue-based
product by the Federal Drug Agency, clinical grade MSCs must
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be cultured under defined GMP compliant conditions in
Europe and U.S., respectively. As our knowledge of these cells
increases, so does the regulatory framework governing their
use which has and will undoubtedly continue to increase the
cost of their use in cell-based therapies. With this in mind,
the development of GMP compliant one-step MSC treatments
may offer both clinical and economic advantages compared to
using monolayer expanded cells. One limitation of a one step
intra-operative approach could be the reduced number of

MSCs delivered to the patient compared with current MSC-
based therapies, where cell doses ranging between 1 and 100
million cells are described. Nevertheless, there is little sup-
porting evidence in the literature to correlate cell number
with clinical efficacy [9]. Our lack of knowledge and under-
standing regarding the clinical implications of cell dose repre-
sents a major unknown in the field which is constraining
development of translational therapies and is thus deserving
of our full attention.

Table 1. A comparison of cell surface marker expression profiles of naive, freshly isolated, and monolayer expanded mesenchymal stem cells

Marker In vivo Freshly isolated Post monolayer expansion Notes

CD44 ? 2 Qian et al. [60] 1 Qian et al. [60] Mouse and human
1 Halfon et al. [89] Human

CD73 1 Rasini et al. [10] Human,
immunohistochemistry

1 Jones et al. [85] 1 Jones et al. [85] Human, previously freeze
thawed

1 Qian et al. [60] 1 Qian et al. [60] Mouse and human." Gene
expression with time in
culture

1 Fekete et al. [59] Human
CD105 1 Jones et al. [85] 1 Jones et al. [85] Human, previously freeze

thawed
? 1 mouse/ low human,

Qian et al. [60]
1 Fekete et al. [59] Human, "gene expression

with time in culture
Human

CD90 ? ? 1 Fekete et al. [59] Human
CD166 ? ? 1 Fekete et al. [59] Human
CD271 1/2 Rasini et al. [10] – Human, niche location

dependant,
immunohistochemistry

1 Qian et al. [60] 2 Fekete et al. [59] Human
1 Cox et al., 2012 [136] Human

Human, # cell surface
marker labeling with time
in culture

CD146 1/2 Rasini et al. [10] Human, niche location
dependant,
immunohistochemistry

1 Qian et al. [60] 1 Jones et al. [85] Human, "gene expression
during culture

1 (variable) Jones et al. [85] 1 Halfon et al. [89] Human, freeze thawed
1/2 Blocki et al. [36] 1 Blocki et al. [36] # With time in culture

Initially negative cells
acquired expression
during culture

CD106 ? 1 (variable) Jones et al. [85] 1 Jones et al. [85] Human, previously freeze
thawed

1 Qian et al. [60] 1 Halfon et al. [89] Mouse and human
# Cell surface marker

labeling with time in
culture

GD2 1 Rasini et al. [10] Human, niche-dependent,
immunohistochemistry

1 Martinez et al. [90] 1 Martinez et al. [90] Human
SCA1 1 Qian et al. [60] Mouse

1 Morikawa et al. [91] 1 Morikawa et al. [91] ? Mouse
1 Nakamura et al. [20] 1 Nakamura et al. [20] Mouse

Stro-1 1 Qian et al. [60] Human
? 1 Simmons et al. [86] Human

Nestin 1 Qian et al. [60] ? Mouse
1 M�endez-Ferrer et al. [6] 1 M�endez-Ferrer et al. [6] Mouse

PDGFr ? 1 Qian et al. [60] ? Mouse

Positive (1) and (2) cell surface antigen expression detailed accordingly.
Note: Cell surface antigen expression ascertained by flow cytometry unless otherwise stated.
Abbreviations: CD, cluster of differentiation; GD2, neural ganglioside 2; PDGFr, platelet-derived growth factor-1 receptor; SCA1, stem cell
antigen-1; Stro-1, stromal-derived factor-1.

1718 In Vivo Versus In Vitro MSC Phenotype

VC AlphaMed Press 2014 STEM CELLS



Bone marrow transplantation has been used effectively
for the treatment of osteonecrosis [105] and fracture nonun-
ions [106–109]. The therapeutic effects of bone marrow are
thought to be attributed to its constitutive MNC population.
In turn, MNCs are postulated to promote tissue regeneration
via several mechanisms (a) by providing a source of progeni-
tor cells (including MSCs) that contribute directly to tissue for-
mation, (b) by producing growth factors which promote repair
actions of native cells, and (c) through modulation of resident
cell behavior by direct cell-cell signaling. MNCs may also pro-
vide vascular cell types and release angiogenic factors which
promote angiogenesis, further aiding tissue regeneration. The
regenerative capacity of MNCs has been reported in spinal
fusion [110] and in animal models of bone [111] and cartilage
repair [112, 113]. Conversely, clinical trials investigating intra-
coronary [114–116], intramyocardial [117], and transendocar-
dial [118] MNC injection post myocardial infarction have
demonstrated safety but little or no improvement in clinical
outcome. The few existing comparative studies of MSC versus
MNC tissue repair in the literature are inconclusive as to the
superiority of one cell source over the other. Limb perfusion
and capillary density were greater following MSC versus MNC
transplantation in a rat model of hind limb ischemia [119].
This was corroborated by improved healing and clinical out-
come using MSCs compared to MNCs in a pilot cell therapy
study for the treatment of diabetic critical limb ischemia
[120]. Conversely, in the case of bone repair, improved bone
growth was observed following MNC versus MSC transplanta-
tion in patients with osteogenesis imperfecta [121]. Interest-
ingly, MNCs were shown to contribute directly to bone
formation whereas MSCs elicited a healing response via a
paracrine mechanism [121]. Both MNCs and in vitro expanded
MSCs have demonstrated safety and clinical efficacy in various

preclinical in vivo models and in clinical cases of tissue regen-
eration; however, whether one cell source is superior to the
other has yet to be elucidated. The answer may be tissue spe-
cific and is likely to be dependent upon other factors such as
cell isolation procedure and route of delivery. A better under-
standing of the mechanisms responsible for their regenerative
capacity is required in order to optimize their use in cell-
based therapies.

MODELING THE MSC NICHE IN BONE MARROW

The development of one-step MSC and MNC therapies
requires a greater understanding of the biology of these cells,
which has prompted the need to develop new three-
dimensional (3D) in vitro culture systems [122]. As reviewed
by Sart et al. [123], several groups have demonstrated the
advantages of postmonolayer expanded spheroid/aggregate
culture systems with regard to maintaining MSC multipotency
and their secretion of trophic factors [124–129]. A 3D culture
system for freshly isolated MNCs would allow one to better
characterize naive MSCs and determine how they could be
manipulated in the clinic biochemically/genetically to enhance
their therapeutic efficacy. Moreover, development of a MSC
bone marrow niche model would improve our understanding
of MSCs in their native environment; allow us to study their
interactions with other bone marrow cells and how aspects of
their behavior such as proliferation, differentiation, and migra-
tory capacity are regulated. Ultimately, an improved knowl-
edge of the MSC bone marrow niche may enable us to
develop targeted pharmacological approaches that exploit the
innate homing ability of these cells facilitating noninvasive tis-
sue repair. Furthermore, such 3D culture systems may offer a

Figure 2. Intraoperative versus in vitro approaches to mesenchymal stem cell therapy and tissue engineering.
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platform for drug screening, model to study bone marrow dis-
orders such as leukemia, and possibly an improved method of
in vitro expansion of MSCs and HSCs for clinical application.

One group have previously developed a perfusion culture
system whereby MNCs were cultured in ceramic-
hydroxyapatite scaffolds [130, 131]. This system generated
constructs containing viable CD1051 and CD451 cell popula-
tions which subsequently ossified ectopically following in vivo
implantation into nude mice [131]. More recently, Claros
et al. recently described a MNC culture system using type I
collagen gels. The proportions of cells expressing typical MSC
markers and CD45 changed during the culture period; how-
ever, it was not entirely clear whether this was attributed to
cell loss (either due to poor retention/cell death) or differen-
tial proliferation rates between cell populations [132]. Nota-
bly, Oct4 and Nanog expressions were detected at day 14 but
absent from MSC cultures expanded in monolayer. Whether
the presence of these multipotent stem cell markers was rep-
resentative of naive MSC or HSC populations is unclear.
Another study reported the culture of unprocessed bone mar-
row into calcium phosphate scaffolds [133]. Immunohisto-
chemical detection of CD105 and CD45 suggested this culture
system supported MSC expansion but was not as supportive
of the hematopoietic fraction. Increasing cell yield, while
maintaining stemness, represents a significant challenge for
the in vitro expansion of clinical grade HSCs. With this in
mind, others have investigated the role of MSCs on HSC pro-
liferation using 3D coculture systems. MSCs derived from
Wharton’s jelly were shown to stimulate the proliferation of
cord blood-derived HSCs in fibrin-polycaprolactone scaffolds
[134]. The same group went on to demonstrate the mitogenic
and chemotactic effects of both Wharton’s jelly-derived and
bone marrow-derived MSCs on HSCs in collagen gels [135]. In
summary, the development of culture systems able to support
bone marrow niche cells, including naive MSCs, has yet to be
achieved. Parameters such as media type, seeding density,
nutrient/oxygen gradients, and scaffold characteristics repre-
sent important considerations when designing such models.

CONCLUSIONS

It is becoming increasingly apparent that monolayer expansion
is not only selective, but leads to distinct changes in MSC
phenotype, leading us to question what aspects of observed
behavior are representative of in vivo behavior and which are
artifact. This issue is potentiated by the absence of standar-
dized isolation and culture techniques which has potentially
serious implications for the development of effective MSC-
based therapies. We suggest that the global standardization of
culture parameters, although practically a challenge, would
improve consistency between research groups and ultimately
enhance the quality and impact of MSC research. For the
development of both one-step and intrinsically targeted MSC
therapies, there is a real need to develop a more suitable in
vitro culture system that maintains MSCs in a naive, multipo-
tent state as they are in bone marrow. The development of
such a culture system poses significant challenges both con-
ceptually and practically. As our knowledge of the bone mar-
row MSC niche grows, so does the complexity of the culture
system required in order to accurately model it. In summary,
a successful bone marrow MSC niche model would not only
allow us to better understand the intrinsic function and repar-
ative properties of these cells but may also allow us to
develop more economical and clinically effective cell
therapies.
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